© Panasonic Corporation 2019
industrial.panasonic.com/ac/e/ モヴヤヵャヘユチビパヒペヒビ
ORDERING INFORMATION
TYPICAL APPLICATIONSFEATURES
GQ RELAYS (AGQ)
High sensitivity, 100 mW
Nominal operating power,
2 Form C and 2 A Compact
ÀDWERG\W\SHUHOD\V
1. High capacity: 2 A
2. Flat compact size
10.6 (L) × 7.2 (W) × 5.2 (H) mm
.417 (L) × .283 (W) × .205 (H) inch
3. +LJKVHQVLWLYLW\VLQJOHVLGHVWDEOH
type (Nominal operating power:
P:LVDYDLODEOH
4. Outstanding surge resistance.
9îȝV)&&SDUW
RSHQFRQWDFWV
9îȝV7HOFRUGLDFRQWDFW
DQGFRLO
5. 7KHXVHRIWZLQFURVVEDUFRQWDFWV
HQVXUHVKLJKFRQWDFWUHOLDELOLW\
$J3GFRQWDFWLVXVHGEHFDXVHRILWV
JRRGVXO¿GHUHVLVWDQFH$GRSWLQJORZ
JDVPROGLQJPDWHULDO&RLODVVHPEO\
PROGLQJWHFKQRORJ\ZKLFKDYRLGV
JHQHUDWLQJYRODWLOHJDVIURPFRLO
1. 7HOHSKRQHVZLWFKERDUG
2. Telecommunications equipment
3. Security
4. Measurement equipment
5. Consumer electronic and audio
visual equipment
Nominal coil voltage (DC)
1H: 1.5V 03: 3V 4H: 4.5V 06: 6V 09: 9V
12: 12V 24: 24V
Contact arrangement
2: 2 Form C
Type of operation
0: Standard type (B.B.M.)
AGQ 2 0
Operating function
0: Single side stable
1: 1 coil latching
6: High sensitivity single side
stable type
Terminal shape
Nil:
A:
S:
Standard PC board terminal
Surface-mount terminal A type
Surface-mount terminal S type
Packing style*1
Nil:
X:
W:
Z:
Y:
Tube packing
Tape and reel packing (picked from 1/2/3/4-pin side)
Tape and reel packing (picked from the 1/2/3/4-pin side)
With humidity indicator and silica gel in moisture proof bag
Tape and reel packing (picked from 5/6/7/8-pin side)
Tape and reel packing (picked from the 5/6/7/8-pin side)
With humidity indicator and silica gel in moisture proof bag
Note 1) The “W” and “Y” at the end of the part number only appears on the inner and outer packing.
It does not appear on the relay itself.
Automation Controls Catalog
ビパヒペハヒビ
ー 1 ー
GQ(AGQ)
Panasonic Corporation Electromechanical Control Business Division
industrial.panasonic.com/ac/e/ © Panasonic Corporation 2019
RATING
1.Coil data
 6LQJOHVLGHVWDEOHW\SH
 FRLOODWFKLQJW\SH
 7XEHSDFNLQJ
 7DSHDQGUHHOSDFNLQJ
1RPLQDOFRLO
YROWDJH
3LFNXSYROWDJH
DW&))
'URSRXWYROWDJH
DW&))
1RPLQDORSHUDWLQJ
FXUUHQW
>@DW&))
&RLOUHVLVWDQFH
>@DW&))
1RPLQDORSHUDWLQJ
SRZHU
0D[DSSOLHGYROWDJH
DW&))
1.5 9'&
9RUOHVVRI
QRPLQDOYROWDJH
,QLWLDO
9RUPRUHRI
QRPLQDOYROWDJH
,QLWLDO
93.8 mA ȍ
140 mW 9RI
QRPLQDOYROWDJH
9'& 46.7 mA ȍ
9'& 31 mA ȍ
9'& 23.3 mA ȍ
9'& 15.5 mA ȍ
9'& 11.7 mA ȍ
9'& 9.6 mA ȍ 230 mW 9RI
QRPLQDOYROWDJH
1RPLQDOFRLO
YROWDJH
6HWYROWDJH
DW&))
5HVHWYROWDJH
DW&))
1RPLQDORSHUDWLQJ
FXUUHQW
>@DW&))
&RLOUHVLVWDQFH
>@DW&))
1RPLQDORSHUDWLQJ
SRZHU
0D[DSSOLHGYROWDJH
DW&))
9'&
9RUOHVVRI
QRPLQDOYROWDJH
,QLWLDO
9RUOHVVRI
QRPLQDOYROWDJH
,QLWLDO
66.7 mA ȍ
100 mW 9RI
QRPLQDOYROWDJH
9'& 33.3 mA ȍ
9'& 22.2 mA ȍ
9'& 16.7 mA ȍ
9'& 11.1 mA ȍ
9'& 8.3 mA ȍ
9'& 5.0 mA ȍ 120 mW
6WDQGDUGSDFNLQJ7XEHSFV&DVHSFV
Ƒ)RUHDFKVXUIDFHPRXQWHGWHUPLQDOLGHQWL¿FDWLRQLQSXWWKHIROORZLQJOHWWHU$W\SH$6W\SH66WDQGDUGSDFNLQJ
7XEHSFV&DVHSFV
Ƒ)RUHDFKVXUIDFHPRXQWHGWHUPLQDOLGHQWL¿FDWLRQLQSXWWKHIROORZLQJOHWWHU$W\SH$6W\SH66WDQGDUGSDFNLQJ
7DSHDQGUHHOSFV&DVHSFV
1RWHV7DSHDQGUHHOSDFNLQJV\PERO³=´LVQRWPDUNHGRQWKHUHOD\³;´W\SHWDSHDQGUHHOSDFNLQJSLFNHGIURPSLQVLGHLVDOVRDYDLODEOH
7DSHDQGUHHOSDFNLQJV\PERO³<´LVQRWPDUNHGRQWKHUHOD\:´W\SHWDSHDQGUHHOSDFNLQJSLFNHGIURPSLQVLGHLVDOVRDYDLODEOH
3OHDVHLQTXLUHLI\RXUHTXLUHDUHOD\EHWZHHQDQG9'&ZLWKDYROWDJHQRWOLVWHG
3XOVHGULYH-,6&
TYPES
 6WDQGDUG3&ERDUGWHUPLQDO
2. Surface-mount terminal
1RPLQDOFRLOYROWDJH 6LQJOHVLGHVWDEOH FRLOODWFKLQJ +LJKVHQVLWLYLW\VLQJOHVLGHVWDEOH
3DUW1R 3DUW1R 3DUW1R
9'& AGQ2001H AGQ2101H AGQ2601H
9'& AGQ20003 AGQ21003 AGQ26003
9'& AGQ2004H AGQ2104H AGQ2604H
9'& AGQ20006 AGQ21006 AGQ26006
9'& AGQ20009 AGQ21009 AGQ26009
9'& AGQ20012 AGQ21012 AGQ26012
9'& AGQ20024 AGQ21024 AGQ26024
1RPLQDOFRLOYROWDJH 6LQJOHVLGHVWDEOH FRLOODWFKLQJ +LJKVHQVLWLYLW\VLQJOHVLGHVWDEOH
3DUW1R 3DUW1R 3DUW1R
9'&
$*4Ƒ+ $*4Ƒ+ $*4Ƒ+
9'&
$*4Ƒ $*4Ƒ $*4Ƒ
9'&
$*4Ƒ+ $*4Ƒ+ $*4Ƒ+
9'&
$*4Ƒ $*4Ƒ $*4Ƒ
9'&
$*4Ƒ $*4Ƒ $*4Ƒ
9'&
$*4Ƒ $*4Ƒ $*4Ƒ
9'&
$*4Ƒ $*4Ƒ $*4Ƒ
1RPLQDOFRLOYROWDJH 6LQJOHVLGHVWDEOH FRLOODWFKLQJ +LJKVHQVLWLYLW\VLQJOHVLGHVWDEOH
3DUW1R 3DUW1R 3DUW1R
9'&
$*4Ƒ+= $*4Ƒ+= $*4Ƒ+=
9'&
$*4Ƒ= $*4Ƒ= $*4Ƒ=
9'&
$*4Ƒ+= $*4Ƒ+= $*4Ƒ+=
9'&
$*4Ƒ= $*4Ƒ= $*4Ƒ=
9'&
$*4Ƒ= $*4Ƒ= $*4Ƒ=
9'&
$*4Ƒ= $*4Ƒ= $*4Ƒ=
9'&
$*4Ƒ= $*4Ƒ= $*4Ƒ=
2SHUDWLQJFKDUDFWHULVWLFVVXFKDVµ2SHUDWHYROWDJH¶DQGµ5HOHDVHYROWDJH¶DUHLQÀXHQFHGE\PRXQWLQJFRQGLWLRQVDPELHQW
WHPSHUDWXUHHWF
7KHUHIRUHSOHDVHXVHWKHUHOD\ZLWKLQRIUDWHGFRLOYROWDJH
µ,QLWLDO¶PHDQVWKHFRQGLWLRQRISURGXFWVDWWKHWLPHRIGHOLYHU\
モヴヤヵャヘユチビパヒペヒビ
ー 2 ー
GQ(AGQ)
Panasonic Corporation Electromechanical Control Business Division
industrial.panasonic.com/ac/e/ © Panasonic Corporation 2019
 +LJKVHQVLWLYLW\VLQJOHVLGHVWDEOHW\SH
 6SHFL¿FDWLRQV
1RPLQDOFRLO
YROWDJH
3LFNXSYROWDJH
DW&))
'URSRXWYROWDJH
DW&))
1RPLQDORSHUDWLQJ
FXUUHQW
>@DW&))
&RLOUHVLVWDQFH
>@DW&))
1RPLQDORSHUDWLQJ
SRZHU
0D[DSSOLHGYROWDJH
DW&))
9'&
9RUOHVVRI
QRPLQDOYROWDJH
,QLWLDO
9RUPRUHRI
QRPLQDOYROWDJH
,QLWLDO
66.7 mA ȍ
100 mW 9RI
QRPLQDOYROWDJH
9'& 33.3 mA ȍ
9'& 22.2 mA ȍ
9'& 16.7 mA ȍ
9'& 11.1 mA ȍ
9'& 8.3 mA ȍ
9'& 5.0 mA ȍ 120 mW 9RI
QRPLQDOYROWDJH
1RWHV  7KLVYDOXHFDQFKDQJHGXHWRWKHVZLWFKLQJIUHTXHQF\HQYLURQPHQWDOFRQGLWLRQVDQGGHVLUHGUHOLDELOLW\OHYHO
WKHUHIRUHLWLVUHFRPPHQGHGWRFKHFNWKLVZLWKWKHDFWXDOORDG
 5HIHUWR³$0%,(17(19,5210(17´LQ*(1(5$/$33/,&$7,21*8,'(/,1(6
3XOVHGULYH-,6&
&KDUDFWHULVWLFV ,WHP 6SHFL¿FDWLRQV
&RQWDFW
$UUDQJHPHQW )RUP&
,QLWLDOFRQWDFWUHVLVWDQFHPD[ 0D[Pȍ%\YROWDJHGURS9'&$
&RQWDFWPDWHULDO 6WDWLRQDU\FRQWDFW$J3G$XFODG0RYDEOHFRQWDFW$J3G
5DWLQJ
1RPLQDOVZLWFKLQJFDSDFLW\ $9'&$9'&$9$&UHVLVWLYHORDG
0D[VZLWFKLQJSRZHU :'&:'&9$$&UHVLVWLYHORDG
0D[VZLWFKLQJYROWDJH 9'&9$&
0D[VZLWFKLQJFXUUHQW 2 A
0LQVZLWFKLQJFDSDFLW\5HIHUHQFHYDOXH1$P9'&
1RPLQDORSHUDWLQJ
SRZHU
6LQJOHVLGHVWDEOH P:WR9'&P:9'&
+LJKVHQVLWLYLW\VLQJOHVLGH
VWDEOHW\SH P:WR9'&P:9'&
FRLOODWFKLQJ
(OHFWULFDO
FKDUDFWHULVWLFV
,QVXODWLRQUHVLVWDQFH,QLWLDO Min. 1,000MȍDW9'&
0HDVXUHPHQWDWVDPHORFDWLRQDV³,QLWLDOEUHDNGRZQYROWDJH´VHFWLRQ
%UHDNGRZQYROWDJH
,QLWLDO
%HWZHHQRSHQFRQWDFWV 9UPVIRUPLQ'HWHFWLRQFXUUHQWP$
%HWZHHQFRQWDFWDQGFRLO 9UPVIRUPLQ'HWHFWLRQFXUUHQWP$
%HWZHHQFRQWDFWVHWV 9UPVIRUPLQ'HWHFWLRQFXUUHQWP$
6XUJHEUHDNGRZQ
YROWDJH,QLWLDO
%HWZHHQRSHQFRQWDFWV 9îV)&&3DUW
%HWZHHQFRQWDFWVDQGFRLO 9îV7HOFRUGLD
7HPSHUDWXUHULVHDW&))0D[&
%\UHVLVWLYHPHWKRGQRPLQDOFRLOYROWDJHDSSOLHGWRWKHFRLOFRQWDFWFDUU\LQJFXUUHQW$
2SHUDWHWLPH>6HWWLPH@DW&))0D[PV>0D[PV@1RPLQDOFRLOYROWDJHDSSOLHGWRWKHFRLOH[FOXGLQJFRQWDFWERXQFHWLPH
5HOHDVHWLPH>5HVHWWLPH@DW&))0D[PV>0D[PV@1RPLQDOFRLOYROWDJHDSSOLHGWRWKHFRLOH[FOXGLQJFRQWDFWERXQFHWLPH
ZLWKRXWGLRGH
0HFKDQLFDO
FKDUDFWHULVWLFV
6KRFNUHVLVWDQFH )XQFWLRQDO 0LQPV2 +DOIZDYHSXOVHRIVLQHZDYHPVGHWHFWLRQWLPHV
'HVWUXFWLYH 0LQPV2 +DOIZDYHSXOVHRIVLQHZDYHPV
9LEUDWLRQUHVLVWDQFH )XQFWLRQDO WR+]DWGRXEOHDPSOLWXGHRIPP'HWHFWLRQWLPHV
'HVWUXFWLYH WR+]DWGRXEOHDPSOLWXGHRIPP
([SHFWHGOLIH
0HFKDQLFDO Min. 5 × 107 DWFSP
(OHFWULFDO Min. 5 × 104 $9'&UHVLVWLYH0LQ5 $9'&UHVLVWLYH
Min. 105 $9$&UHVLVWLYHDWFSP
&RQGLWLRQV &RQGLWLRQVIRURSHUDWLRQWUDQVSRUWDQGVWRUDJH2
$PELHQWWHPSHUDWXUH
6LQJOHVLGHVWDEOHFRLOODWFKLQJW\SH±&WR&±)WR)
+LJKVHQVLWLYLW\VLQJOHVLGHVWDEOHW\SH±&WR&±)WR)
+XPLGLW\WR5+1RWIUHH]LQJDQGFRQGHQVLQJDWORZWHPSHUDWXUH
0D[RSHUDWLQJVSHHGDWUDWHGORDG FSP
8QLWZHLJKW $SSUR[JR]
REFERENCE DATA
 0D[VZLWFKLQJFDSDFLW\
0D[VZLWFKLQJFDSDFLW\LV$9'&
 /LIHFXUYH  0HFKDQLFDOOLIH
7HVWHGVDPSOH$*4$+SFV
2SHUDWLQJVSHHGFSP
30 100
Contact voltage, V
1.0
0.3
DC resistive load
AC resistive load
Switching current, A
Switching current, A
No. of operations, × 104
0.2 0.4 0.6 0.8 1.0 1.2
100
50
30
40
20
10
0
DC 30V resistive load
AC 125V
resistive load
4
3
2
1
0100
Max.
Min.
30 50
Pick-up voltage
Drop-out voltage
No. of o
p
erations
,
×104
Voltage, V
Max.
Min.
モヴヤヵャヘユチビパヒペヒビ
ー 3 ー
GQ(AGQ)
Panasonic Corporation Electromechanical Control Business Division
industrial.panasonic.com/ac/e/ © Panasonic Corporation 2019
 (OHFWULFDOOLIH$9'&UHVLVWLYHORDG
7HVWHGVDPSOH$*1+SFV
2SHUDWLQJVSHHGFSP
&KDQJHRISLFNXSDQGGURSRXWYROWDJH
2SHUDWHDQGUHOHDVHWLPHZLWKRXWGLRGH
7HVWHGVDPSOH$*4+
 0DOIXQFWLRQDOVKRFN
7HVWHGVDPSOH$*4$+SFV
2SHUDWHDQGUHOHDVHWLPHZLWKGLRGH
7HVWHGVDPSOH$*4+
,QÀXHQFHRIDGMDFHQWPRXQWLQJ
7HVWHGVDPSOH$*1SFV
$PELHQWWHPSHUDWXUHFKDUDFWHULVWLFV7HVWHG
7HVWHGVDPSOH$*1+SFV
,QÀXHQFHRIDGMDFHQWPRXQWLQJ
7HVWHGVDPSOH$*1SFV
&KDQJHRIFRQWDFWUHVLVWDQFH
 &RLOWHPSHUDWXUHULVH
7HVWHGVDPSOH$*1+$*1SFV
3RLQWPHDVXUHG,QVLGHWKHFRLO
$PELHQWWHPSHUDWXUH5RRPWHPSHUDWXUH
DIMENSIONS (mm inch)7KH&$'GDWDRIWKHSURGXFWVZLWKDCAD Data PDUNFDQEHGRZQORDGHGIURPKWWSVLQGXVWULDOSDQDVRQLFFRPDFH
CAD Data ([WHUQDOGLPHQVLRQV
 3&ERDUGWHUPLQDO
3&ERDUGSDWWHUQ
6LQJOHVLGHVWDEOH
+LJKVHQVLWLYLW\
VLQJOHVLGHVWDEOH
'HHQHUJL]HGFRQGLWLRQ 5HVHWFRQGLWLRQ
FRLOODWFKLQJ
7ROHUDQFH±.004
6FKHPDWLF%RWWRPYLHZ
10.60±0.3
0.40±0.1
2.20±0.15
2.20±0.15
3.20±0.15 3.50±0.3
5.20±0.2 7.20±0.3
0.20±0.1
5.08±0.15
.417±.012
.016±.004
.087±.006
.087±.006
.126±.006 .138±.012
.205±.008 .283±.012
.008±.004
.200±.006
5.08
2.20
2.20
3.20
0.85 dia.
.200
.087
.087
.126
.033 dia.
Direction indication
4321
5678
Direction indication
4321
5678
100 110 120 130 140 150
70
60
50
40
30
20
10
0
24V DC type
4.5V DC type
1 A
1 A
0 A
0 A
Coil applied voltage, %
Temperature rise, °C
60 80 10040
-40 -20 0
20
-50
50
40
30
20
10
-40
-30
-20
-10Ambient temperature, °C
Rate of change, %V
Drop-out
voltage
Pick-up
voltage
x
x
Y
Y'
Z'
ZX
X'
Y'
Y
XZ
Z' X'
Deenergized condition
Energized condition
1,000m/s
2
1,000m/s
2
1,000m/s
2
1,000m/s
2
1,000m/s
2
1,000m/s
2
0
X
20
10
40
60
80
90
70
50
30
100
0105
N.O. contact
N.C. contact
X
No. of operations, ×104
&RQWDFWUHVLVWDQFHPȍ
8070 90 100 110 120 130
3
2
1
0
Max.
Max.
Min.
Min.
Release time
Operate time
Coil applied voltage, %V
Operate and release time, ms
8070 90 100 110 120 130
3
2
1
0
Max.
Min.
Max.
Min.
Coil applied voltage, %V
Operate and release time, ms
Release time
Operate time
068101224
-5
-10
0
5
10
-10
0
5
-5
10
ON
ON
ON
OFF OFF
OFF
Drop-out voltage
Pick-up voltage
.236 .315 .394 .472.079 .157
Inter-relay distance , mm inch
Rate of change, %V Rate of change, %V
024681012
.079 .157 .236 .315 .394 .472
-10
0
10
-10
-5
-5
5
5
0
10
Drop-out voltage
Pick-up voltage
ON
ON
ON
OFF
OFF
OFF
Inter-relay distance , mm inch
Rate of change, %V Rate of change, %V
Max.
Max.
Min.
Min.
0
20
10
40
60
80
90
70
50
30
100
0510
Pick-up voltage
Drop-out voltage
No. of operations, ×104
Ratio against the rated voltage, %V
モヴヤヵャヘユチビパヒペヒビ
ー 4 ー
GQ(AGQ)
Panasonic Corporation Electromechanical Control Business Division
industrial.panasonic.com/ac/e/ © Panasonic Corporation 2019
CAD Data
2. Surface-mount terminal
7\SH ([WHUQDOGLPHQVLRQV 6XJJHVWHGPRXQWLQJSDG7ROHUDQFH±.004)
6LQJOHVLGHVWDEOHFRLOODWFKLQJ+LJKVHQVLWLYLW\VLQJOHVLGHVWDEOH 6LQJOHVLGHVWDEOHFRLOODWFKLQJ+LJKVHQVLWLYLW\VLQJOHVLGHVWDEOH
$W\SH
10.60±0.3
0.40±0.1
Max. 5.40
8.40±0.3
3.20±0.15
2.20±0.15
2.20±0.15
7.20±0.3
0.20±0.1
5.08±0.15
.417±.012
.016±.004
.213
.331±.012
.126±.006
.087±.006
.087±.006
.283±.012
.008±.004
.200±.006
3.20
2.20
2.20
0.80
2.66 6.74
.126
.087
.087
.031
.105 .265
6W\SH
10.60±0.3
Max. 5.40
0.40±0.1
3.20±0.15
2.20±0.15
2.20±0.15
7.20±0.3
7.20±0.3
0.20±0.1
5.08±0.15
.417±.012
.213
.016±.004
.126±.006
.087±.006
.087±.006
.283±.012
.283±.012
.008±.004
.200±.006
3.20
2.20
2.20
0.80
2.06 6.14
.126
.087
.087
.031
.081 .242
Schematic (Top view)
6LQJOHVLGHVWDEOH
+LJKVHQVLWLYLW\VLQJOHVLGHVWDEOH
'HHQHUJL]HGFRQGLWLRQ 5HVHWFRQGLWLRQ
FRLOODWFKLQJ
Direction indication
4321
5678
Direction indication
4321
5678
NOTES
1. Packing style
 7KHUHOD\LVSDFNHGLQDWXEHZLWKWKH
UHOD\RULHQWDWLRQPDUNRQWKHOHIWVLGHDV
VKRZQLQWKH¿JXUHEHORZ
2. Automatic insertion
7RPDLQWDLQWKHLQWHUQDOIXQFWLRQRIWKH
UHOD\WKHFKXFNLQJSUHVVXUHVKRXOGQRW
H[FHHGWKHYDOXHVEHORZ
&KXFNLQJSUHVVXUHLQWKHGLUHFWLRQ$
1^NJI`RUOHVV
&KXFNLQJSUHVVXUHLQWKHGLUHFWLRQ%
1^NJI`RUOHVV
&KXFNLQJSUHVVXUHLQWKHGLUHFWLRQ&
1^NJI`RUOHVV
3OHDVHFKXFNWKHSRUWLRQ
$YRLGFKXFNLQJWKHFHQWHURIWKHUHOD\
,QDGGLWLRQH[FHVVLYHFKXFNLQJSUHVVXUH
WRWKHSLQSRLQWRIWKHUHOD\VKRXOGEHDOVR
DYRLGHG
6W\SH
7DSHGLPHQVLRQV
 'LPHQVLRQVRISODVWLFUHHO
 7DSHDQGUHHOSDFNLQJ
$W\SH
7DSHGLPHQVLRQV
mm inch
mm inch
Orientation (indicates PIN No.1) stripe
Stopper (green) Stopper (red)
Orientation (indicates PIN No.1) stripe
Stopper (green) Stopper (red)
Relay polarity bar
(Z type)
Tape coming out direction
General tolerance ±0.1 mm .004 inch
4.0
0.40
1.75
2.00 dia.
2.0
12.0 7.8
Max. 6.55
11.5
1.50 dia.
+0.1
0
+.003
.0
GQ relays
11.1
24.0±0.3
.157
.016
.069
.079 dia.
.079
.472 .307
.256
.453
.437
.945±.012
.059 dia.
Relay polarity bar
(Z type)
Tape coming out direction
General tolerance ±0.1 mm .004 inch
1.50 dia.
4.00
0.40
1.75
2.00 dia.
2.0
12.0 9.0
Max. 6.55
24.0±0.3
11.1
11.5
+0.1
0
+.003
.0
GQ relays
.157
.016
.069
.079 dia.
.079
.472 .354
.256
.945±.012
.437
.453
.059 dia.
21 dia.
13 dia.
2.0
.827 dia.
.512 dia.
.079
80±1 dia.
3.150±.039 dia.
330±2 dia.
12.992±.079 dia.
ACB
モヴヤヵャヘユチビパヒペヒビ
ー 5 ー
GQ(AGQ)
Panasonic Corporation Electromechanical Control Business Division
industrial.panasonic.com/ac/e/ © Panasonic Corporation 2019
5
85
Avoid icing
when used at
temperatures
lower than 0
Avoid con-
densation when
used at tem-
peratures higher
than 0
070-40
Humidity (%RH)
Allowable range
Temperature(
°C)
5
85
Humidity (%RH)
Avoid icing
when used at
temperatures
lower than 0°C
Avoid con-
densation when
used at tem-
peratures higher
than 0°C
Allowable range
Temperature(
°C)
085-40
$PELHQW(QYLURQPHQW
Usage, Transport, and Storage Conditions
'XULQJXVDJHVWRUDJHRUWUDQVSRUWDWLRQDYRLGORFDWLRQVVXEMHFWHG
WRGLUHFWVXQOLJKWDQGPDLQWDLQQRUPDOWHPSHUDWXUHKXPLGLW\DQG
SUHVVXUHFRQGLWLRQV
Temperature/Humidity
:KHQWUDQVSRUWLQJRUVWRULQJUHOD\VZKLOHWKH\DUHWXEH
SDFNDJHGWKHUHDUHFDVHVWKHWHPSHUDWXUHPD\GLႇHU
IURPWKHDOORZDEOHUDQJH,QWKLVFDVHEHVXUHWRFKHFNWKH
LQGLYLGXDOVSHFL¿FDWLRQV
$OVRDOORZDEOHKXPLGLW\OHYHOLVLQÀXHQFHGE\WHPSHUDWXUH
SOHDVHFKHFNFKDUWVVKRZQEHORZDQGXVHUHOD\VZLWKLQ
PHQWLRQHGFRQGLWLRQV$OORZDEOHWHPSHUDWXUHYDOXHV
6LQJOHVLGHVWDEOHFRLOODWFKLQJW\SH
+LJKVHQVLWLYLW\VLQJOHVLGHVWDEOHW\SH
3OHDVHUHIHUWRWKHODWHVWSURGXFWVSHFL¿FDWLRQV
ZKHQGHVLJQLQJ\RXUSURGXFW
5HTXHVWVWRFXVWRPHUV
KWWSVLQGXVWULDOSDQDVRQLFFRPDFHVDOHVSROLFLHV
モヴヤヵャヘユチビパヒペヒビ
ー 6 ー
Panasonic Corporation Electromechanical Control Business Division
industrial.panasonic.com/ac/e/ Panasonic Corporation 2019
c
GUIDELINES FOR SIGNAL RELAYS USAGE
Precautions for Coil Input
For cautions for use, please read “GUIDELINES FOR RELAY USAGE”.
https://industrial.panasonic.com/ac/e/control/relay/cautions_use/index.jsp
Long term current carrying
A circuit that will be carrying a current continuously for long periods
without relay switching operation. (circuits for emergency lamps, alarm
devices and error inspection that, for example, revert only during
malfunction and output warnings with form B contacts) Continuous,
long-term current to the coil will facilitate deterioration of coil insulation
and characteristics due to heating of the coil itself.
For circuits such as these, please use a magnetic-hold type latching
relay. If you need to use a single stable relay, use a sealed type relay
that is not easily a󰀨ected by ambient conditions and make a failsafe
circuit design that considers the possibility of contact failure or
disconnection.
DC Coil operating power
Steady state DC current should be applied to the coil. The wave form
should be rectangular. If it includes ripple, the ripple factor should be
less than 5%.
However, please check with the actual circuit since the electrical
characteristics may vary. The rated coil voltage should be applied to
the coil and the set/reset pulse time of latching type relay di󰀨ers for
each relays, please refer to the relay's individual specications.
Coil connection
When connecting coils of polarized relays, please check coil polarity
(+,-) at the internal connection diagram (Schematic). If any wrong
connection is made, it may cause unexpected malfunction, like
abnormal heat, re and so on, and circuit do not work. Avoid
impressing voltages to the set coil and reset coil at the same time.
Maximum allowable voltage and temperature rise
Proper usage requires that the rated coil voltage be impressed on the
coil. Note, however, that if a voltage greater than or equal to the
maximum continuous voltage is impressed on the coil, the coil may
burn or its layers short due to the temperature rise. Furthermore, do
not exceed the usable ambient temperature range listed in the catalog.
Maximum allowable voltage for coil
In addition to being a requirement for relay operation stability, the
maximum continuous impressed coil voltage is an important constraint
for the prevention of such problems as thermal deterioration or
deformity of the insulation material, or the occurrence of re hazards.
Temperature rise due to pulse voltage
When a pulse voltage with ON time of less than 2 minutes is used, the
coil temperature rise bares no relationship to the ON time. This varies
with the ratio of ON time to OFF time, and compared with continuous
current passage, it is rather small. The various relays are essentially
the same in this respect.
Operate voltage change due to coil temperature rise 
 (Hot start)
In DC relays, after continuous passage of current in the coil, if the
current is turned OFF, then immediately turned ON again, due to the
temperature rise in the coil, the pick-up voltage will become somewhat
higher. Also, it will be the same as using it in a higher temperature
atmosphere. The resistance/temperature relationship for copper wire
is about 0.4% for 1°C, and with this ratio the coil resistance increases.
That is, in order to operate of the relay, it is necessary that the voltage
be higher than the pick-up voltage and the pick-up voltage rises in
accordance with the increase in the resistance value. However, for
some polarized relays, this rate of change is considerably smaller.
Current passage time (%)
For continuousu passage Tempereture rise value is
100
%
ON : OFF =
3
:
1
About
80
%
ON : OFF =
1
:
1
About
50
%
ON : OFF =
1
:
3
About
35
%
ON : OFF = 1 : 1
Voltage
Time
ASCTB414E 201906
ー 7 ー
Panasonic Corporation Electromechanical Control Business Division
industrial.panasonic.com/ac/e/ Panasonic Corporation 2019
c
GUIDELINES FOR SIGNAL RELAYS USAGE
Others
Cleaning
1) Although the environmentally sealed type relay (plastic sealed type,
etc.) can be cleaned, avoid immersing the relay into cold liquid (such
as cleaning solvent) immediately after soldering. Doing so may
deteriorate the sealing performance.
2) Surface mount terminal type relay is sealed type and it can be
cleaned by immersion. Use pure water or alcohol-based cleaning
solvent.
Please refer to "the latest product specications"
when designing your product.
•Requests to customers:
https://industrial.panasonic.com/ac/e/salespolicies/
3) Cleaning with the boiling method is recommended (The temperature
of cleaning liquid should be 40°C or lower).
Avoid ultrasonic cleaning on relays. Use of ultrasonic cleaning may
cause breaks in the coil or slight sticking of the contacts due to the
ultrasonic energy.
Ambient Environment
Dew condensation
Condensation occurs when the ambient temperature drops suddenly
from a high temperature and humidity, or the relay and microwave
device is suddenly transferred from a low ambient temperature to a
high temperature and humidity. Condensation causes the failures like
insulation deterioration, wire disconnection and rust etc.
Panasonic Corporation does not guarantee the failures caused by
condensation.
The heat conduction by the equipment may accelerate the cooling of
device itself, and the condensation may occur.
Please conduct product evaluations in the worst condition of the actual
usage. (Special attention should be paid when high temperature
heating parts are close to the device. Also please consider the
condensation may occur inside of the device.)
Icing
Condensation or other moisture may freeze on relays when the
temperature become lower than 0°C.This icing causes the sticking of
movable portion, the operation delay and the contact conduction failure
etc. Panasonic Corporation does not guarantee the failures caused by
the icing.
The heat conduction by the equipment may accelerate the cooling of
relay itself and the icing may occur. Please conduct product
evaluations in the worst condition of the actual usage.
Low temperature and low humidity
The plastic becomes brittle if the switch is exposed to a low
temperature, low humidity environment for long periods of time.
High temperature and high humidity
Storage for extended periods of time (including transportation periods)
at high temperature or high humidity levels or in atmospheres with
organic gases or sulde gases may cause a sulde lm or oxide lm to
form on the surfaces of the contacts and/or it may interfere with the
functions. Check out the atmosphere in which the units are to be
stored and transported.
Package
In terms of the packing format used, make every e󰀨ort to keep the
e󰀨ects of moisture, organic gases and sulde gases to the absolute
minimum.
Storage requirements
Since the SMD type is sensitive to humidity it is packaged with tightly
sealed anti-humidity packaging. However, when storing, please be
careful of the following.
1) Please use promptly once the anti-humidity pack is opened.(Signal
relay: within 72 hours, Max. 30°C/70% RH). If left with the pack
open, the relay will absorb moisture which will cause thermal stress
when reow mounting and thus cause the case to expand. As a
result, the seal may break.
2) If relays will not be used within 72 hours, please store relays in a
humidity controlled desiccator or in an anti-humidity bag to which
silica gel has been added.
* If the relay is to be soldered after it has been exposed to excessive
humidity atmosphere, cracks and leaks can occur. Be sure to mount
the relay under the required mounting conditions
3) The following cautionary label is a󰀩xed to the anti-humidity pack.
Silicon
When a source of silicone substances (silicone rubber, silicone oil,
silicone coating materials and silicone lling materials etc.) is used
around the relay, the silicone gas (low molecular siloxane etc.) may be
produced.
This silicone gas may penetrate into the inside of the relay. When the
relay is kept and used in this condition, silicone compound may adhere
to the relay contacts which may cause the contact failure. Do not use
any sources of silicone gas around the relay (Including plastic seal
types).
NOx Generation
When relay is used in an atmosphere high in humidity to switch a load
which easily produces an arc, the NOx created by the arc and the
water absorbed from outside the relay combine to produce nitric acid.
This corrodes the internal metal parts and adversely a󰀨ects operation.
Avoid use at an ambient humidity of 85% RH or higher (at 20°C). If use
at high humidity is unavoidable, please contact our sales
representative.
ASCTB414E 201906
ー 8 ー
Please contact ..........
Electromechanical Control Business Division
industral.panasonic.com/ac/e/
Specifications are subject to change without notice.
1006, Oaza Kadoma, Kadoma-shi, Osaka 571-8506, Japan
©Panasonic Corporation 2019
ASCTB7E 201912